[1] |
Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030[J]. J Bone Joint Surg Am, 2007, 89( 4 ): 780-785.
|
[2] |
戴尅戎, 李慧武, 严孟宁. 我国人工关节加速发展的二十年[J/CD]. 中华关节外科杂志( 电子版 ), 2015, 9( 6 ): 691-694.
|
[3] |
Hofmann AA, Heithoff SM, Camargo M. Cementless total knee arthroplasty in patients 50 years or younger[J]. Clin Orthop Relat Res, 2002( 404 ): 102-107.
|
[4] |
Keeney JA, Eunice S, Pashos G, et al. What is the evidence for total knee arthroplasty in young patients? : a systematic review of the literature[J]. Clin Orthop Relat Res, 2011, 469( 2 ): 574-583.
|
[5] |
Miller AJ, Stimac JD, Smith LS, et al. Results of cemented vs cementless primary total knee arthroplasty using the same implant design[J]. J Arthroplasty, 2018, 33( 4 ): 1089-1093.
|
[6] |
Matassi F, Carulli C, Civinini R, et al. Cemented versus cementless fixation in total knee arthroplasty[J]. Joints, 2014, 1( 3 ): 121-125.
|
[7] |
Dalury DF. Cementless total knee arthroplasty: current concepts review[J]. Bone Joint J, 2016, 98-B( 7 ): 867-873.
|
[8] |
Abdel MP, Bonadurer GF 3rd, Jennings MT, et al. Increased aseptic tibial failures in patients with a BMI ≥35 and well-aligned total knee arthroplasties[J]. J Arthroplasty, 2015, 30( 12 ): 2181-2184.
|
[9] |
Meftah M, White PB, Ranawat AS, et al. Long-term results of total knee arthroplasty in young and active patients with posterior stabilized design[J]. Knee, 2016, 23( 2 ): 318-321.
|
[10] |
Ritter MA, Michael Keating E, Sueyoshi T, et al. Twenty-fiveyears and greater, results after nonmodular cemented total knee arthroplasty[J]. J Arthroplasty, 2016, 31( 10 ): 2199-2202.
|
[11] |
Sartawi M, Zurakowski D, Rosenberg A. Implant survivorship and complication rates after total knee arthroplasty with a thirdgeneration cemented system: 15-year follow-up[J/OL]. Am J Orthop, 2018, 47( 3 ). DOI:10.12788/ajo.2018.0018.
|
[12] |
Gwam CU, George NE, Etcheson JI, et al. Cementless versus cemented fixation in total knee arthroplasty: usage, costs, and complications during the inpatient period[J]. J Knee Surg, 2019, 32( 11 ): 1081-1087.
|
[13] |
Scott RD, Volatile TB. Twelve years’ experience with posterior cruciate-retaining total knee arthroplasty[J]. Clin Orthop Relat Res,1986( 205 ): 100-107.
|
[14] |
Goodheart JR, Miller MA, Oest ME, et al. Trabecular resorption patterns of cement-bone interlock regions in total knee replacements[J]. J Orthop Res, 2017, 35( 12 ): 2773-2780.
|
[15] |
Han HS, Lee MC. Cementing technique affects the rate of femoral component loosening after high flexion total knee arthroplasty[J].Knee, 2017, 24( 6 ): 1435-1441.
|
[16] |
Yoon C, Chang MJ, Chang CB, et al. Medial tibial periprosthetic bone resorption and its effect on clinical outcomes after total knee arthroplasty: cobalt-chromium vs titanium implants[J]. J Arthroplasty, 2018, 33( 9 ): 2835-2842.
|
[17] |
Parker DA, Rorabeck CH, Bourne RB. Long-term follow-up of cementless versus hybrid fixation for total knee arthroplasty[J]. Clin Orthop Relat Res, 2001( 388 ): 68-76.
|
[18] |
Robertsson O, Knutson K, Lewold S, et al. The Swedish knee arthroplasty register 1975-1997: an update with special emphasis on 41, 223 knees operated on in 1988-1997[J]. Acta Orthop Scand,2001, 72( 5 ): 503-513.
|
[19] |
Furnes O, Espehaug B, Lie SA, et al. Early failures among 7,174 primary total knee replacements: a follow-up study from the Norwegian Arthroplasty Register 1994-2000[J]. Acta Orthop Scand,2002, 73( 2 ): 117-129.
|
[20] |
Gao F, Henricson A, Nilsson KG. Cemented versus uncemented fixation of the femoral component of the NexGen CR total knee replacement in patients younger than 60 years: a prospective randomized controlled RSA study[J]. Knee, 2009, 16( 3 ): 200-206.
|
[21] |
Carr AJ, Robertsson O, Graves S, et al. Knee replacement[J].Lancet, 2012, 379( 9823 ): 1331-1340.
|
[22] |
Kamath AF, Siddiqi A, Malkani AL, et al. Cementless fixation in primary total knee arthroplasty: historical perspective to contemporary application[J/OL]. J Am Acad Orthop Surg, 2021, 29( 8 ): e363-e379. DOI:10.5435/JAAOS-D-20-00569.
|
[23] |
Yamamoto S. Total knee replacement with the Kodama-Yamamoto knee prosthesis[J]. Clin Orthop Relat Res, 1979( 145 ): 60-67.
|
[24] |
Yamamoto S, Nakata S, Kondoh Y. A follow-up study of an uncemented knee replacement. The results of 312 knees using the Kodama-Yamamoto prosthesis[J]. J Bone Joint Surg Br, 1989, 71( 3 ):505-508.
|
[25] |
Bhimji S, Michael Meneghini R. Micromotion of cementless tibial baseplates under physiological loading conditions[J]. J Arthroplasty, 2012, 27( 4 ): 648-654.
|
[26] |
Regnér L, Carlsson L, Kärrholm J, et al. Clinical and radiologic survivorship of cementless tibial components fixed with finned polyethylene pegs[J]. J Arthroplasty, 1997, 12( 7 ): 751-758.
|
[27] |
Shimagaki H, Bechtold JE, Sherman RE, et al. Stability of initial fixation of the tibial component in cementless total knee arthroplasty[J]. J Orthop Res, 1990, 8( 1 ): 64-71.
|
[28] |
Peters PC Jr, Engh GA, Dwyer KA, et al. Osteolysis after total knee arthroplasty without cement[J]. J Bone Joint Surg Am, 1992, 74( 6 ):864-876.
|
[29] |
Berger RA, Lyon JH, Jacobs JJ, et al. Problems with cementless total knee arthroplasty at 11 years followup[J]. Clin Orthop Relat Res,2001( 392 ): 196-207.
|
[30] |
Whiteside LA. Effect of porous-coating configuration on tibial osteolysis after total knee arthroplasty[J]. Clin Orthop Relat Res,1995( 321 ): 92-97.
|
[31] |
Gandhi R, Tsvetkov D, Davey JR, et al. Survival and clinical function of cemented and uncemented prostheses in total knee replacement: a meta-analysis[J]. J Bone Joint Surg Br, 2009, 91( 7 ):889-895.
|
[32] |
Duffy GP, Berry DJ, Rand JA. Cement versus cementless fixation in total knee arthroplasty[J]. Clin Orthop Relat Res, 1998( 356 ):66-72.
|
[33] |
Whiteside LA. Cementless total knee replacement. Nine-to 11-year results and 10-year survivorship analysis[J]. Clin Orthop Relat Res,1994( 309 ): 185-192.
|
[34] |
Ward WG, Johnston KS, Dorey FJ, et al. Extramedullary porous coating to prevent diaphyseal osteolysis and radiolucent lines around proximal tibial replacements. A preliminary report[J]. J Bone Joint Surg Am, 1993, 75( 7 ): 976-987.
|
[35] |
Whiteside LA, Fosco DR, Brooks JG Jr. Fracture of the femoral component in cementless total knee arthroplasty[J]. Clin Orthop Relat Res, 1993( 286 ): 71-77.
|
[36] |
Søballe K. Hydroxyapatite ceramic coating for bone implant fixation.Mechanical and histological studies in dogs[J]. Acta Orthop Scand Suppl, 1993, 255: 1-58.
|
[37] |
Furlong RJ, Osborn JF. Fixation of hip prostheses by hydroxyapatite ceramic coatings[J]. J Bone Joint Surg Br, 1991, 73( 5 ): 741-745.
|
[38] |
LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates[J]. Clin Orthop Relat Res, 2002( 395 ): 81-98.
|
[39] |
Porter AE, Hobbs LW, Benezra Rosen V, et al. The ultrastructure of the plasma-sprayed hydroxyapatite-bone interface predisposing to bone bonding[J]. Biomaterials, 2002, 23( 3 ): 725-733.
|
[40] |
Kilpadi KL, Chang PL, Bellis SL. Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel[J]. J Biomed Mater Res, 2001, 57( 2 ): 258-267.
|
[41] |
Sun L, Berndt CC, Gross KA, et al. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review[J]. J Biomed Mater Res, 2001, 58( 5 ): 570-592.
|
[42] |
Toksvig-Larsen S, Jorn LP, Ryd L, et al. Hydroxyapatite-enhanced tibial prosthetic fixation[J]. Clin Orthop Relat Res, 2000( 370 ):192-200.
|
[43] |
Dumbleton J, Manley MT. Hydroxyapatite-coated prostheses in total hip and knee arthroplasty[J]. J Bone Joint Surg Am, 2004, 86( 11 ):2526-2540.
|
[44] |
Carlsson A, Björkman A, Besjakov J, et al. Cemented tibial component fixation performs better than cementless fixation: a randomized radiostereometric study comparing porous-coated,hydroxyapatite-coated and cemented tibial components over 5 years[J]. Acta Orthop, 2005, 76( 3 ): 362-369.
|
[45] |
Søballe K, Toksvig-Larsen S, Gelineck J, et al. Migration of hydroxyapatite coated femoral prostheses. A Roentgen stereophotogrammetric study[J]. J Bone Joint Surg Br, 1993, 75 ( 5 ):681-687.
|
[46] |
Gejo R, Akizuki S, Takizawa T. Fixation of the NexGen HA-TCP-coated cementless, screwless total knee arthroplasty: comparison with conventional cementless total knee arthroplasty of the same type[J]. J Arthroplasty, 2002, 17( 4 ): 449-456.
|
[47] |
Michael Keating E, Meding JB, Faris PM, et al. Long-term followup of nonmodular total knee replacements[J]. Clin Orthop Relat Res,2002( 404 ): 34-39.
|
[48] |
King TV, Scott RD. Femoral component loosening in total knee arthroplasty[J]. Clin Orthop Relat Res, 1985( 194 ): 285-290.
|
[49] |
Onsten I, Nordqvist A, Carlsson AS, et al. Hydroxyapatite augmentation of the porous coating improves fixation of tibial components. A randomised RSA study in 116 patients[J]. J Bone Joint Surg Br, 1998, 80( 3 ): 417-425.
|
[50] |
Bercovy M, Beldame J, Lefebvre B, et al. A prospective clinical and radiological study comparing hydroxyapatite-coated with cemented tibial components in total knee replacement[J]. J Bone Joint Surg Br, 2012, 94( 4 ): 497-503.
|
[51] |
Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment[J]. Mater Sci Eng C Mater Biol Appl, 2016, 59: 690-701.
|
[52] |
任博, 朱庆生, 朱锦宇. 骨小梁金属胫骨假体的临床应用新进展[J/CD]. 中华关节外科杂志( 电子版 ), 2014,8( 1 ): 116-120.
|
[53] |
Mäkelä KT, Matilainen M, Pulkkinen P, et al. Failure rate of cemented and uncemented total hip replacements: register study of combined Nordic database of four nations[J/OL]. BMJ, 2014, 348:f7592. DOI:10.1136/bmj.f7592.
|
[54] |
吴桂勤, 苏训同, 张荣凯, 等. 一体化生物型胫骨假体在膝关节表面置换术的近期临床疗效[J]. 广东医学, 2019, 40( 13 ):1936-1939.
|
[55] |
焦域, 张晓岗, 阿斯哈尔江·买买提明, 等. 不同年龄段患者两种胫骨平台假体人工全膝关节置换术的疗效比较 [J]. 中国修复重建外科杂志, 2021,35( 12 ):1563-1573.
|
[56] |
Pulido L, Abdel MP, Lewallen DG, et al. The mark coventry award:trabecular metal tibial components were durable and reliable in primary total knee arthroplasty: a randomized clinical trial[J]. Clin Orthop Relat Res, 2015, 473( 1 ): 34-42.
|
[57] |
Meneghini RM, de Beaubien BC. Early failure of cementless porous tantalum monoblock tibial components[J]. J Arthroplasty, 2013, 28( 9 ): 1505-1508.
|
[58] |
Unger AS, Duggan JP. Midterm results of a porous tantalum monoblock tibia component clinical and radiographic results of 108 knees[J]. J Arthroplasty, 2011, 26( 6 ): 855-860.
|
[59] |
Ghalayini SA, Helm AT, McLauchlan GJ. Minimum 6year results of an uncemented trabecular metal tibial component in total knee arthroplasty[J]. Knee, 2012, 19( 6 ): 872-874.
|
[60] |
Fernandez-Fairen M, Hernández-Vaquero D, Murcia A, et al.Trabecular metal in total knee arthroplasty associated with higher knee scores: a randomized controlled trial[J]. Clin Orthop Relat Res, 2013, 471( 11 ): 3543-3553.
|
[61] |
Waddell DD, Sedacki K, Yang Y, et al. Early radiographic and functional outcomes of a cancellous titanium-coated tibialcomponent for total knee arthroplasty[J]. Musculoskelet Surg, 2016, 100( 1 ):71-74.
|
[62] |
Abu-Rajab RB, Watson WS, Walker B, et al. Peri-prosthetic bone mineral density after total knee arthroplasty. Cemented versus cementless fixation[J]. J Bone Joint Surg Br, 2006, 88( 5 ): 606-613.
|
[63] |
Nam D, Lawrie CM, Salih R, et al. Cemented versus cementless total knee arthroplasty of the same modern design: a prospective,randomized trial[J]. J Bone Joint Surg Am, 2019, 101( 13 ):1185-1192.
|
[64] |
Lim HK, Ryu M, Woo SH, et al. Bone conduction capacity of highly porous 3D-printed titanium scaffolds based on different pore designs[J/OL]. Materials, 2021, 14( 14 ): 3892. DOI:10.3390/ma14143892.
|
[65] |
Murr LE, Amato KN, Li SJ, et al. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting[J]. J Mech Behav Biomed Mater, 2011, 4( 7 ): 1396-1411.
|
[66] |
Murr LE, Gaytan SM, Martinez E, et al. Next generation orthopaedic implants by additive manufacturing using electron beam melting[J/OL]. Int J Biomater, 2012, 2012: 245727.DOI:10.1155/2012/245727.
|
[67] |
Laende EK, Richardson CG, Dunbar MJ. Predictive value of shortterm migration in determining long-term stable fixation in cemented and cementless total knee arthroplasties[J]. Bone Joint J, 2019,101-B( 7_Supple_C ): 55-60.
|
[68] |
Sporer S, MacLean L, Burger A, et al. Evaluation of a 3D-printed total knee arthroplasty using radiostereometric analysis: assessment of highly porous biological fixation of the tibial baseplate and metalbacked patellar component[J]. Bone Joint J, 2019, 101-B( 7_Supple_C ): 40-47.
|
[69] |
Hasan S, van Hamersveld KT, Marang-van de Mheen PJ, et al.Migration of a novel 3D-printed cementless versus a cemented total knee arthroplasty: two-year results of a randomized controlled trial using radiostereometric analysis[J]. Bone Joint J, 2020, 102-B( 8 ):1016-1024.
|
[70] |
Restrepo S, Smith EB, Hozack WJ. Excellent mid-term follow-up for a new 3D-printed cementless total knee arthroplasty[J]. Bone Joint J,2021, 103-B( 6 Supple A ): 32-37.
|
[71] |
Ritter MA, Michael Meneghini R. Twenty-year survivorship of cementless anatomic graduated component total knee arthroplasty[J]. J Arthroplasty, 2010, 25( 4 ): 507-513.
|
[72] |
Lawrie CM, Schwabe M, Pierce A, et al. The cost of implanting a cemented versus cementless total knee arthroplasty[J]. Bone Joint J,2019, 101-B( 7_Supple_C ): 61-63.
|
[73] |
Yayac M, Harrer S, Hozack WJ, et al. The use of cementless components does not significantly increase procedural costs in total knee arthroplasty[J]. J Arthroplasty, 2020, 35( 2 ): 407-412.
|
[74] |
Hays MB, Mayfield JF. Total blood loss in major joint arthroplasty.A comparison of cemented and noncemented hip and knee operations[J]. J Arthroplasty, 1988, 3 Suppl: S47-S49.
|
[75] |
Mylod AG Jr, France MP, Muser DE, et al. Perioperative blood loss associated with total knee arthroplasty. A comparison of procedures performed with and without cementing[J]. J Bone Jt Surg, 1990, 72( 7 ): 1010-1012.
|
[76] |
Porteous AJ, Bartlett RJ. Post-operative drainage after cemented,hybrid and uncemented total knee replacement[J]. Knee, 2003, 10( 4 ): 371-374.
|
[77] |
Demey G, Servien E, Pinaroli A, et al. The influence of femoral cementing on perioperative blood loss in total knee arthroplasty: a prospective randomized study[J]. J Bone Joint Surg Am, 2010, 92( 3 ):536-541.
|
[78] |
Kamath AF, Lee GC, Sheth NP, et al. Prospective results of uncemented tantalum monoblock Tibia in total knee arthroplasty:minimum 5-year follow-up in patients younger than 55 years[J]. J Arthroplasty, 2011, 26( 8 ): 1390-1395.
|
[79] |
Pijls BG, Valstar ER, Kaptein BL, et al. The beneficial effect of hydroxyapatite lasts: a randomized radiostereometric trial comparing hydroxyapatite-coated, uncoated, and cemented tibial components for up to 16 years[J]. Acta Orthop, 2012, 83( 2 ): 135-141.
|
[80] |
Sanchez Marquez JM, Del Sel N, Leali A, et al. Case reports:Tantalum debris dispersion during revision of a tibial component for TKA[J]. Clin Orthop Relat Res, 2009, 467( 4 ): 1107-1110.
|
[81] |
Bagsby DT, Issa K, Smith LS, et al. Cemented vs cementless total knee arthroplasty in morbidly obese patients[J]. J Arthroplasty,2016, 31( 8 ): 1727-1731.
|
[82] |
Sultan AA, Khlopas A, Sodhi N, et al. Cementless total knee arthroplasty in knee osteonecrosis demonstrated excellent survivorship and outcomes at three-year minimum follow-up[J]. J Arthroplasty, 2018, 33( 3 ): 761-765.
|
[83] |
Hotfiel T, Carl HD, Eibenberger T, et al. Cementless femoral components in bicondylar hybrid knee arthroplasty in patients with rheumatoid arthritis: a 10-year survivorship analysis[J/OL]. J Orthop Surg, 2017, 25( 2 ): 2309499017716252.DOI:10.1177/2309499017716252.
|
[84] |
Woo YK, Kim KW, Chung JW, et al. Average 10.1-year follow-up of cementless total knee arthroplasty in patients with rheumatoid arthritis[J]. Can J Surg, 2011, 54( 3 ): 179-184.
|
[85] |
Petursson G, Fenstad AM, Havelin LI, et al. Better survival of hybrid total knee arthroplasty compared to cemented arthroplasty[J]. Acta Orthop, 2015, 86( 6 ): 714-720.
|
[86] |
Chockalingam S, Scott G. The outcome of cemented vs. cementless fixation of a femoral component in total knee replacement ( TKR )with the identification of radiological signs for the prediction of failure[J]. Knee, 2000, 7( 4 ): 233-238.
|
[87] |
Illgen R, Tueting J, Enright T, et al. Hybrid total knee arthroplasty:a retrospective analysis of clinical and radiographic outcomes at average 10 years follow-up[J]. J Arthroplasty, 2004, 19( 7 Suppl 2 ): 95-100.
|
[88] |
Perry CR, Perry KI. Femoral component survival in hybrid total knee arthroplasty[J]. Orthopedics, 2016, 39( 3 ): 181-186.
|
[89] |
Yang JH, Yoon JR, Oh CH, et al. Hybrid component fixation in total knee arthroplasty: minimum of 10-year follow-up study[J]. J Arthroplasty, 2012, 27( 6 ): 1111-1118.
|
[90] |
Niemeläinen M, Skyttä ET, Remes V, et al. Total knee arthroplasty with an uncemented trabecular metal tibial component: a registrybased analysis[J]. J Arthroplasty, 2014, 29( 1 ): 57-60.
|
[91] |
De Martino I, D’Apolito R, Sculco PK, et al. Total knee arthroplasty using cementless porous tantalum monoblock tibial component: a minimum 10-year follow-up[J]. J Arthroplasty, 2016, 31( 10 ):2193-2198.
|
[92] |
Huddleston JI, Wiley JW, Scott RD. Zone 4 femoral radiolucent lines in hybrid versus cemented total knee arthroplasties: are they clinically significant?[J]. Clin Orthop Relat Res, 2005, 441: 334-339.
|